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Fig. 1. Left: Traditional 2D projection (A) of a single artery, and 3D representation (C) of a right coronary artery tree with a rainbow
color map. Right: 2D tree diagram representation (B) and equivalent 3D representation (D) of a left coronary artery tree with a
diverging color map.

Abstract — Heart disease is the number one killer in the United States, and �nding indicators of the disease at an early stage is
critical for treatment and prevention. In this paper we evaluate visualization techniques that enable the diagnosis of coronary artery
disease. A key physical quantity of medical interest is endothelial shear stress (ESS). Low ESS has been associated with sites of
lesion formation and rapid progression of disease in the coronary arteries. Having effective visualizations of a patient's ESS data is
vital for the quick and thorough non-invasive evaluation by a cardiologist. We present a task taxonomy for hemodynamics based on
a formative user study with domain experts. Based on the results of this study we developed HemoVis, an interactive visualization
application for heart disease diagnosis that uses a novel 2D tree diagram representation of coronary artery trees. We present the
results of a formal quantitative user study with domain experts that evaluates the effect of 2D versus 3D artery representations and
of color maps on identifying regions of low ESS. We show statistically signi�cant results demonstrating that our 2D visu alizations are
more accurate and ef�cient than 3D representations, and tha t a perceptually appropriate color map leads to fewer diagnostic mistakes
than a rainbow color map.

Index Terms —Quantitative evaluation, qualitative evaluation, biomedical and medical visualization.

1 INTRODUCTION

In the United States, the leading cause of death is heart disease result-
ing in over 600,000 deaths per year [24]. Early prevention and treat-
ment is vital for saving lives, and visualization plays an essential role
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for patient diagnosis in cardiovascular imaging. A new non-invasive
diagnostic technique under development uses Computed Tomography
Angiography (CTA) data from patients combined with blood �ow sim-
ulations to calculate hemodynamic risk factors, in particular Endothe-
lial Shear Stress (ESS), in coronary arteries [40]. Visualization meth-
ods of this data are of great value for this emerging researchand have
the potential to lead to faster, more accurate heart diseasediagnoses.

Current visualizations techniques, as shown in Fig. 1 (left), use ei-
ther a 2D cylindrical projection of a single artery or a 3D represen-
tations of the coronary artery tree. In both cases, ESS is mapped to
the surface using a color encoding, typically with a rainbow(or “spec-
trum”) color map. Both representations have their advantages and dis-
advantages: 2D allows one to see all the data at once, but anatomical
information is lost both in the shape of a vessel and in how each indi-
vidual vessel connects to other branches. 3D preserves the anatomical
structure, but introduces issues of occlusion and requireshuman inter-
action to rotate the model in order to see all the data. The fundamental
visualization issue is how to display a scalar quantity – ESS– that is



parameterized on the surface of a three-dimensional spatial structure –
coronary artery trees – using effective visual encodings.

In collaboration with doctors and researchers in cardiovascular
imaging and applied physics, we set out to investigate the effective-
ness of different visualization strategies for this problem. We �rst
conducted an informal qualitative user study with our domain experts
to develop a task taxonomy and determine their current visualization
practices and needs. During this process we developed HemoVis, a
novel 2D tree diagram representation that presents all the data at once
while still encoding pertinent anatomical information such as vessel
circumference and branch structure (Fig. 1, B). Despite positive feed-
back about HemoVis, we encountered resistance from users towork
only with the 2D representation and to use a diverging color map that
emphasizes features in the data more effectively. To investigate these
issues we conducted a formal quantitative user study with medical do-
main experts to evaluate the effectiveness of 2D versus 3D representa-
tions, and the effect color has on task completion performance.

The �rst contribution of this paper is a task taxonomy for hemody-
namics that is based on a qualitative user study with medicalexperts.
Guided by this task analysis, our second contribution is thedesign of
HemoVis, an interactive visualization application for heart disease di-
agnosis that uses a novel 2D projection and layout for arterytrees. The
third and main contribution of the paper is a quantitative user study
with domain experts that shows statistically signi�cant results demon-
strating that our 2D representations are more accurate and ef�cient
than 3D visualizations. In addition, the performance in 3D drops with
an increase in the complexity of what is being examined whilethe 2D
representation is insensitive to it. Our study also shows that a percep-
tually appropriate color map leads to fewer diagnostic mistakes than
a rainbow color map both in 2D and in 3D, and that task completion
times were nearly twice as slow with the rainbow color map in 3D. To
the best of our knowledge, this is the �rst quantitative evaluation of the
effect of spatial and color encodings for a domain task with medical
professionals and real patient data.

2 RELATED WORK

Vessel visualization: Vessels or branched systems are primar-
ily visualized with 3D representations [7, 13, 28, 31] with scalar quan-
tities such as ESS mapped onto the surface using color encodings [12].
In 2D, a common technique is to generate a Curved Planar Reforma-
tion (CPR) visualization of the vascular structure, where an image is
generated by taking slices along a generated centerline anddisplaying
the intensity units [15, 44]. A drawback of CPR is that it provides
limited information about the artery wall, thus not giving aclear indi-
cation of how wide or narrow the vessel is at any particular point nor
convey ESS data for the entire artery. There are also other 2Dprojec-
tion techniques all with the goal of �attening the structureinto a single
view [39, 51, 52]. 3D representations have the problem of occlusion
that does not allow a doctor or researcher to see all the data simultane-
ously. Techniques have been developed to improve 3D representations
using visual cues such as shadows and transparency to improve spatial
acuity in 3D [20, 34] or to include 2D data [45]. In our 2D represen-
tation, all the necessary data including ESS is displayed for a medi-
cal practitioner to assess the severity of disease within ananatomical
frame of reference.

2D vs. 3D visualizations: Formal evaluations are a valuable
measure to determine the effectiveness of visual representations and
data encodings [18, 30]. A variety of case studies and formaluser
studies have demonstrated that 2D data encodings and representations
are generally more effective than 3D for tasks involving spatial mem-
ory, spatial identi�cation, and precision [9, 48]. Excellent examples
exist in the realms of vector �eld [11, 21, 25] and geospatialvisualiza-
tion [2, 4, 17, 19, 29]. Although 2D is typically more effective, there
are strategies to improve 3D performance, such as using occlusion and
perspective [42, 50] or stereographic displays [47]. Our work inves-
tigates the effectiveness of 2D versus 3D artery representations in the
context of heart disease diagnosis by medical experts.

Color map evaluations: Choosing the appropriate color map
is essential for the effective display and analysis of quantitative data.
Based on fundamental human perceptual principles and the type of
data being displayed (sequential, diverging, or categorical), there are
formal and systematic ways to make an appropriate color choice based
on the task at hand [14, 27, 33, 38, 46]. Based on laboratory user stud-
ies, speci�c guidelines are available for the effective design of color
maps [32, 36, 49]. A particular color map of interest is the rainbow
map which, despite being a favorite color map across the sciences [5],
is poorly suited for most data tasks and can prove misleadingsince it
is not perceptually ordered and isoluminant [5, 23, 38, 37, 49]. Quan-
titative studies con�rm these facts [16, 35] and propose better ways
to design color maps and discern when isoluminant maps are suitable.
Despite this general body of knowledge, there has been little study
on the effects of the color map within a real-life domain application.
We present a quantitative evaluation of the rainbow map's effects on
task accuracy and ef�ciency by domain experts within a real domain
application.

3 SCIENTIFIC BACKGROUND

Atherosclerosis, the disease focused on in this research, occurs when
plaque forms in the arterial wall, causing possible obstruction of blood
�ow as well as changes in the outer dimension of the artery. Sites
of plaque deposit (atherosclerotic lesions) form where the endothe-
lial cells that line the arterial wall exhibit increased in�ammation and
permeability to lipid molecules such as LDL (i.e., bad cholesterol).
Over time these plaques can either become a low-risk type that is
quite large and causes a narrowing of the artery (stenosis), or a high-
risk type that can rupture, potentially causing a heart attack. These
high-risk deposits are not detectable with conventional imaging. In
the United States, approximately 300,000 deaths per year occur from
coronary artery disease and� 60% are caused by rupture of these high-
risk plaques [10]. However, recent research has shown that areas of
low endothelial shear stress (ESS), i.e., the frictional force of blood
on the artery wall, stimulate the development of these high-risk le-
sions [8, 43], and that these lesions primarily appear wherethere is
disturbed �ow, e.g., at artery bifurcations, bends, and regions of in-
creased diameter. Thus ESS is a powerful indicator of plaqueforma-
tion and disease progression.

However, it is impossible to directly measure ESSin vivo for an
entire arterial tree. As a consequence, one needs to rely on blood �ow
simulations to calculate a patient's ESS based on their artery geome-
tries. Combining this blood �ow simulation with a patient's3D re-
construction of their coronary arteries allows doctors to detect areas
of low ESS, identify plaque sites non-invasively, and take preventative
measures before a heart attack occurs [40]. In order to have ecologi-
cal validity and develop visualizations speci�cally targeted at the most
important diagnostic tasks, we conducted a formative qualitative user
study to determine a user's tasks, what data needs to be visualized to
perform these tasks, and what are the best ways to visualize the re-
quired data.

4 FORMATIVE QUALITATIVE USER STUDY

4.1 Overview & Logistics

The �rst goal of this study was to characterize the medical and re-
search problems being addressed by the participants and their speci�c
domain tasks related to atherosclerosis. This was achievedby con-
ducting a series of semi-structured interviews with 10 medical doctors
and researchers representing the potential future users ofsuch data.
All the participants were interviewed at and af�liated withBrigham
and Women's Hospital (Boston, MA). In an attempt to cover as broad
an audience as possible, study participants ranged in age, gender, ex-
perience level, education background, job seniority, clinical versus re-
search focus, and department (radiology versus cardiology).

Each participant was interviewed and asked the same set of ques-
tions to gather suf�cient information on their background and experi-
ence, research interests, knowledge of hemodynamics, and their cur-
rent work�ow goals and tasks. Each participant was then shown a



Table 1. Domain tasks, broken down by clinical versus research focus,
of participants based on a formative qualitative user study.

ID Task Clinical Research
1 Identify stenosis or blockage X X
2 Identify regions of low ESS X X
3 View all ESS data for heteroge-

neous patterns
X X

4 Study blood �ow (velocity) pat-
terns

X

5 Identify regions of blood recircu-
lation

X

6 Investigate other physical vari-
ables of blood �ow

X

7 Follow patient's disease progres-
sion

X X

series of images covering 2D and 3D representations of ESS. The de-
sired outcome was, based on the resulting feedback, to answer the fol-
lowing questions: What data should be shown to accomplish tasks of
clinical importance? What are the optimal 2D representations? What
are the optimal 3D representations? Should the data be encoded in 2D
or 3D? And what color schemes are best to aid the individual intask
completion?

4.2 Task Taxonomy

The participants' jobs fall into two broad categories: clinical diagnos-
tics and fundamental research. The former represents thoseindividu-
als who work on making clinical diagnoses for speci�c patients, and
the latter represents individuals who work on investigating the funda-
mental causes of heart disease. Some individuals fall into both cat-
egories (e.g., doctors who split their time between medicalpractice
and research). Table 1 represents all the domain tasks citedby partic-
ipants and category of individuals that cited the task. Bothcategories
of individuals need to accomplish the same basic set of tasksessen-
tial to the immediate diagnosis of patients based on factorsthat have a
proven link to atherosclerosis (i.e., low ESS, artery geometry). How-
ever, those with a research focus care about further exploring the data
to investigate variables or aspects not necessarily with a proven link to
disease.

Each of these domain tasks can be abstracted to fundamental ana-
lytic tasks presented by Amar et al. [1]. Tasks 1 and 2 correspond to
�nding extrema. The clinical diagnostics study participants expounded
on the need for these tasks to be accomplished in a quick and ef�cient
manner with minimal cognitive effort for rapid diagnosis ofthe patient.
These tasks are usually done inside or just outside a procedure room
to expedite taking preventative measures (e.g., insertionof a stent). In
a research setting the time pressure was lower. Task 3 corresponds to
clusteringof the data. In a clinical setting, this task is not as essential
or of the same importance as 1 or 2, but would be necessary for diag-
nosis in complicated cases. Task 4-6 are about�nding anomaliesin the
data. In these cases time is not a factor, and being able to analyze the
data carefully is the primary goal. Finally, task 7 is acorrelationtask,
requiring comparison of multiple data sets, if available for a patient, in
order to follow the progression of the disease.

4.3 2D Representations

Projections The �rst portion of the qualitative user study was
focused on 2D projections of the arteries. This is relevant to Tasks
1-3 (see Table 1). All but one of the participants had been exposed
to reading ESS values from a cylindrical projection representation of
an artery, and all were familiar with ESS in general. Initially two
different types of projections were shown to participants (Fig. 2 top
and middle). The top image is a traditional cylindrical projection in
which the length of the image is based on the length of the artery,
and the width is arbitrarily chosen. The middle image represents a

Fig. 2. The three different cylindrical projection techniques presented
to users during the formative qualitative user study. Top: Traditional
cylindrical projection. Middle: Projection with circumference mapped to
image height above the x-axis. Bottom: Projection with circumference
mapped to the width of image symmetric on centerline (preferred pro-
jection by users).

variation on this cylindrical projection in which the widthequals the
circumference of the artery at the cross section.

During the user study, the �rst two participants in the post-
evaluation interview commented on the middle cylindrical projection.
They both said that it was slightly confusing to them and that, when
viewing the image, they were mentally re�ecting the image over the
x-axis to make it symmetric. Upon presenting them with the pseudo-
cylindrical projection based on their feedback depicted inFig. 2 (bot-
tom), they both commented that this was a superior mapping. This
projection maps the circumference of the artery at the crosssection to
the height, and centers it along a centerline. For the remainder of the
study we presented all three projections to the participants.

All the participants preferred the pseudo-cylindrical projection map
(Fig. 2 bottom). When asked whether this projection is confusing, they
replied “no”. Although not exactly reproducing the real geometry, the
representation is able to encode enough geometric information to show
the user the relationship between geometry and ESS as well aswhere
stenoses occur. This representation is also intuitive for clinicians since
the 2D mapping mimics what one would see if an artery is cut-open
(“butter�ied”) for ex vivostudies.

Tree Diagram Layout Continuing with 2D representations, for
tasks 1-3, all of the study participants were presented witha visualiza-
tion of the artery tree in with each node was representative of an artery
and branches indicative of bifrucations (Fig. 3). When presented with
the hierarchical tree layout in Fig. 3 (top), no one had ever seen any-
thing like it before and all except one individual respondedthat they
greatly preferred this data representation and found it useful. Unlike
CPR visualizations that only include two locations of the artery wall
[15, 44], this tree diagram not only shows the artery structure but con-
veys the length and width of each vessel. The most common feedback
on the tree diagram was the great bene�t of being able to see all the
data at once without the usual occlusion challenges found in3D repre-
sentations, and being able to display and compare multiple data sets at
the same time (task 7). The two most commonly cited scenarioswhere
this would be useful are for viewing a patient's data with theblood
�ow simulation adjusted to simulate a patient at rest and at heightened
physical exertion (i.e., low and high �ow rates), and for viewing mul-
tiple image acquisitions of a patient over time in order to view and
compare the simulation output for each. This latter scenario would aid
the doctor in observing the progression of disease over time.



Fig. 3. Original and �nal tree layout schemes. Top: Initial design of tree
layout. Bottom: Final tree layout based on feedback from users to make
it more anatomically representative.

As shown in the initial sketch (Fig. 3 top), the study subjects were
presented with some possible interactions with the tree data includ-
ing the ability to open and close branches, move branches around the
screen, and interactively crop the color scale. All of the participants
said that closing the branches is not useful since they always want to
see the other data sets and keep the data in context. Everyonealso
stated that being able to move or drag branches around the screen is
not a good idea since they want to maintain the same static anatomical
structure when viewing the data for context.

All of the user study participants, except the research staff partici-
pants without advanced degrees, noted that the tree was not accurately
conveying the anatomical information. When the initial design (Fig. 3
top) was created, the branches were arranged to �t the space avail-
able on the screen. Independent of each other, the participants were
asked to describe or draw what adjustments they would make tocreate
an anatomically “correct” version of the tree. All of these individu-
als made the same recommendations. For the vertical arrangement,
the branches should be ordered from major to minor arteries with the
placement of each descending branch point below the “parent” vessel
(and if descending branch “superior”, i.e., branch points anatomically
go upwards, place it above the parent vessel). If there are two very
close major bifurcations, then present it in the tree diagram as a trifur-
cation. Finally, always have the tree diagram lines angled and drawn
in the same direction as the blood �ow (does not make sense to have
blood �ow “upstream”) which also eliminates the need for directional
arrows.

The �nal diagram is shown in Fig. 3 (bottom). It should also be
noted that the sample data set we used for the study has a largecom-
plex branched structure and that the ESS data is high resolution com-
pared to a typical data set. This was chosen on purpose to represent the
most complicated large case available with conventional scan technol-

ogy. Finally, to evaluate whether a portrait or landscape presentation
was more useful, the participants where shown a tree diagramrepre-
sentation in each orientation. All the participants preferred the land-
scape orientation depicted in Fig. 3 (bottom) since it was intuitive to
“read” the visualization and �ow direction from left to right, and com-
parisons were easier for multiple data sets when stacked vertically.

4.4 3D Representations

The next portion of the formative qualitative user study wasfocused on
the 3D display of ESS data, and which of 2D or 3D display techniques
may be better for the completion of the domain tasks. All of the partic-
ipants had previously seen 3D representations of ESS as a 3D surface
with ESS mapped in color onto the exterior (see Fig. 1, C). Mapping
ESS in 3D is useful since it maintains the true geometry and anatomy
a doctor is accustomed to seeing, and makes it easier to translate the
knowledge back to a surgical setting. A common practice, cited by
the study participants and visible in the literature, is to choose stan-
dard viewing angles that a doctor or surgeon would be interested in.
However, to view all the data effectively at the same time requires in-
teractivity or animated rotation. 2D projections of ESS, such as those
discussed in Secion 4.3, have the advantage of being able to show all
the data without occlusion, to display all the data in a static state, and
to easily compare multiple data sets.

4.5 Color

A portion of the qualitative study was devoted to determing the best
color schemes to encode scalar ESS data in either 2D or 3D. Except
for this portion of the study, all images presented during the study
were created using a rainbow color scheme. Rainbow is the standard
color map used in the medical literature, and we did not want the par-
ticipants to be distracted by unusual colors when asking about spatial
data encoding techniques.

A total of eight carefully designed simple color schemes were pre-
sented to the users (see Fig. 4). The priority was designing ascheme
that brought out the data structure to accomplish tasks 1-3,particularly
the data which is not as visible when viewed with the standardrainbow
map [22]. Four of the color schemes are based on diverging color ta-
bles from Cynthia Brewer's ColorBrewer [6]. The other two diverging
color schemes were designed based on the concept of luminance be-
ing easy to read with it encoding the scalar ESS value and withchroma
only highlighting the highest or lowest ESS values. Also included was
a simple luminance scheme with no color. The color schemes pre-
sented to the study participants are shown in Fig. 4: a rainbow map
[A], a desaturated rainbow map with yellow at the mid-point (rather
than the standard green) [B], a diverging map from blue to redwith
white at the divergence point [C], a diverging map from blue to red
with cream at the divergence point [D], a sequential greyscale map
[E], a diverging map from red to black with white at the divergence
point [F], a diverging map from blue to black with white at thediver-
gence point [G], and a diverging map from purple to orange with white
at the divergence point [H].

Every study participant except one said that they liked the rainbow
scheme the best. The reasons for this are that it is what they are “used
to seeing”, the colors are more saturated than those in the other scales
making it “easier to see”, it is the “most aesthetically pleasing” of the
choices, and that it is the “easiest to directly determine the numerical
value” of the ESS based on matching the color to the scale. However,
the participants were astute and saw, after viewing all the color maps,
that red is the most eye-catching as it has a “pop-out” effect[3]. Mul-
tiple study participants acknowledged that their primary task is iden-
tifying regions of low ESS so it would make sense to have the areas
of concern be red. Thus they suggested a more useful version of the
rainbow scale would be to invert it, so that red indicates lowESS and
blue high ESS.

Examining the non-rainbow schemes, the simple grayscale shows
great detail and subtleties in the ESS data, especially compared to
the rainbow scale. However, most of the participants objected to this
scheme citing that when they see a black-and-white image they as-
sume the data is raw radiological imagery (e.g., x-ray, MRI,etc.) and



Fig. 4. Color schemes presented during the qualitative user study. The
rainbow scheme (A) was preferred by most since it is what they are
accustomed to viewing. The next most popular scheme was the red-
black diverging scale (F). The grayscale image (E) was unanimously
disliked since participants assume black-and-white images to be raw
radiological data, while color indicates that the data has been processed
or simulated.

not simulated data. When they see a false-color scale, they immedi-
ately make the assumption that it is processed and/or simulated data
and not raw imagery. Thus it is important to include some formof
color when mapping data like ESS to avoid confusion.

Of the non-rainbow schemes, the one study participants liked the
best was the red-to-black diverging scale. They felt it did the best job
of grabbing their attention to the highlighted areas of extreme ESS
and showing the data structure. Although some of these usershad
pointed out that a pure luminance scale with no color usuallyindicates
raw imaging data, none of them complained or mentioned this when
picking the red-to-black scale. Finally, one user liked thediverging
red-to-blue schemes the best. Also, a number of participants gave
positive comments during this color design portion of the study, ac-
knowledging that they could see more structure in the data when using
a non-rainbow scheme, and that they would consider using a diverging
color scheme instead in their own data analysis.

In summary, the key take-aways and lessons learned during the for-
mative qualitative user study are to keep the data representation as
anatomically correct as possible (i.e., choice of 2D projection and tree
diagram layout); that a 2D data display is more effective fordata anal-
ysis and for comparing multiple data sets; that the best color choice
is a diverging color scheme utilizing red to highlight the regions of
greatest interest; and that a pure black-and-white color scheme should
be avoided since users associate it with raw radiological data. As will
be discussed in the following section, we applied all these principles
in the development and design of HemoVis.

5 HEMOVIS

Using an iterative task-driven design based on our formative quali-
tative user study, we developed a 2D interactive visualization called
HemoVis1(Figs. 5 & 6). The design is based on the qualitative evalua-
tion with additional feedback from select users and the tasktaxonomy
with a focus on the tasks that are most relevant for both clinical and
research settings (1-3 & 7 from Table 1) as described in Sec. 4.2.

HemoVis has two viewing modes:tree (Fig. 5) andindividual
(Fig. 6). In tree mode, a tree diagram of the arterial system is pre-

1Available online at http://www.seas.harvard.edu/� borkin/HemoVis

Fig. 5. HemoVis in the “tree” mode displaying a patient's left coronary
artery tree with color mapped to ESS.

Fig. 6. HemoVis in the “individual” mode displaying a single artery with
small tree diagram for navigation in the lower right.

sented in which each node is representative of an artery and each line
segment representing a bifrucation. Each artery is displayed using the
2D pseudo-cylindrical projection discussed in Sec. 4.3, islabeled with
its anatomical name, and has its ESS values encoded with color. The
color and size scales are displayed to the left of the tree diagram. The
upper right of the screen displays the relevant metadata forthe par-
ticular data set. The interaction techniques implemented are based on
expert feedback from the qualitative study and follow-up discussions.
The user is able to simultaneously view additional simulation data sets
for the same patient by clicking the small triangles. A user can mouse-
over the images to display exact quantitative ESS and circumference
measurements. If the second data set is open for a particularartery,
then a cross-hair cursor will appear on the image opposite from the
mouse cursor indicating the equivalent position. One can also change
the desired color mapping by selecting one of the colored boxes in
the lower left corner. To switch modes, there are two mode buttons
in the upper left. In the alternate individual mode, only oneartery
is displayed at a time allowing the user to take care at studying par-
ticular arteries in high resolution. In this mode there is also a small
non-interactive version of the entire coronary tree in the lower right
corner to help keep the displayed artery in context as well asbe used
to navigate the branches by clicking them. HemoVis is implemented
in Processing2.

The data for both our qualitative and quantitative (Sec. 6) user stud-
ies comes from the Multiscale Hemodynamics Project3. The patients'
coronary geometries are obtained from CTA data acquired with a 320
detector row Toshiba AquilionONE scanner. The data is 4D from a
series of cardiac cycles which is then registered into a single volume.
The data is then semi-automatically segmented using Vitrea(Vital Im-

2http://www.processing.org
3http://hemo.seas.harvard.edu



ages Inc). The end result is a series of 3D surfaces of the heart and
coronary arteries. These geometries are then loaded into MUPHY, a
multi-physics and multi-scale code combining Molecular Dynamics
(MD) with a Lattice Boltzmann (LB) method, to model the blood�ow
through the static geometries [26]. The simulation was run using a par-
allel implementation on Harvard's IBM BlueGene/L. The result is 3D
data of the simulated blood �ow and associated properties including
ESS.

However, despite positive feedback from users and the domain ex-
pert driven iterative design, many potential users were reluctant to try
the prototype because they were not convinced it was really better than
a 3D representation. Also, despite expert acknowledgment during the
formative qualitative study's section on color choice thatsome of the
non-rainbow schemes did an excellent job of displaying features in
their data and presenting users with background literatureon the rain-
bow color map (see Sec. 2), the users were reluctant to choosean alter-
native color map to rainbow. Additionally we wanted to quantitatively
investigate, with this real world example, what effect datarepresen-
tation and color encoding has on task performance. As a result, we
decided to conduct a formal quantitative user study to evaluate if a 2D
representation is more effective than 3D and if color can effect how
one perceives ESS features.

6 QUANTITATIVE USER STUDY

We conducted a formal quantitative user study to determine whether a
2D or 3D data representation of ESS was more effective and ef�cient
for diagnosing a patient's coronary artery disease. We alsowanted to
see if there were quantitatively measurable performance effects based
on the color scheme utilized, speci�cally the rainbow and the diverging
red/black color maps. Having an effective visualization isimportant in
making an accurate diagnosis, but having an ef�cient visualization is
also important in order to allow a medical professional to take rapid
preventative measures if needed as well as increasing overall hospital
ef�ciency. To maintain high external validity of our results for this
domain, we worked with medical professionals and real patient data.

6.1 Hypotheses

Our hypotheses entering the user study were:

H.1 Compared to a 3D representation, a 2D data representation will
result in fewer diagnostic errors and faster performance.

H.2 A non-rainbow color map, speci�cally a diverging color map,
will result in fewer diagnostic errors and faster performance than
a rainbow color map.

6.2 Participants and Apparatus

In order to have a large number of medically literate participants in the
study, we chose to use medical students. These participantsall had the
basic medical expert training and knowledge of cardiovascular disease
and anatomy and did, therefore, have the necessary expertise to fully
understand and complete the tasks presented in the study. Participants
had no prior bias towards any speci�c ESS visualization because the
non-invasive diagnostic technique being presented here isnot yet a
part of standard clinical practice.

Twenty-one Harvard Medical students participated in the study.
This included 12 women and 9 men, with a spread of 1st through 4th

year students. All participants reported having normal color vision
and were additionally checked at the beginning of their session using
a standard Ishihara pseudo-isochromatic plate series for detection of
protan/deutan (i.e., red/green) and tritan (i.e., blue/yellow) color vi-
sion de�ciencies. Each participant was monetarily compensated for
their time at the end of their session.

All study sessions were conducted in the same room with identical
lighting, and on the same MacBook Pro 15” laptop. Participants where
offered the choice of a wireless mouse or trackpad based on which
they felt more comfortable using; every participant chose the wireless
mouse. The 2D representations were displayed using Preview, and
the 3D representations were displayed using Paraview. Audio, video

screen capture, and mouse clicks and movements were all recorded
with Screen�ick.

6.3 Tasks and Procedure

The study session for each participant started with the color vision test,
followed by a basic survey to obtain demographic information and
to assess their knowledge of both heart disease and �uid dynamics.
The participants were then provided with two pages of background
information giving a brief overview of the project and the new non-
invasive diagnostic tool being evaluated. Next the participants where
given instructions for their task (“identify all low ESS regions”) and
shown a series of images (see Fig. 1 (B) for sample 2D and (D) for
equivalent 3D representation) for them to perform the task on with a
survey in-between each image to gauge their con�dence levels. The
session concluded with verbal questions and feedback.

During the main part of the experiment, each participant wasshown
on a LCD screen a series of 8 images with the �rst 2 serving as a train-
ing tasks. The images alternated between 2D and 3D representations
to minimize difference in learning effects between the two represen-
tations, and the images included an evenly distributed mix of left and
right coronary artery trees (since the left and right sides have slightly
different anatomical structures and complexities as demonstrated in
the 3D representations (C and D) of Fig. 1 ). The data used in the 3rd
and 4th images shown to the participant were also used in the 7th and
8th images but using the alternate 2D/3D representation to allow for a
larger number of measurements per participant.

The participant's task (which was explained in both printedand ver-
bal instructions with annotated sample visualizations) was to identify
all the low ESS regions in each image. In both 2D and 3D conditions,
a person could indicate small regions by clicking on them with the
left mouse button, while larger regions could be marked by encircling
them with the mouse cursor. These actions left no visible mark on the
image, but were recorded by our software for post-experimental anal-
ysis. In 3D, the participant could arbitrarily rotate the model. Based
on results from our pilot run of this study, we did not enable zoom-
ing because it did not improve the diagnostic accuracy, but frequently
caused participants to become disoriented, losing track ofwhich parts
of the image they had examined and which they had not.

After each image, the participants �lled-out a questionnaire where,
based on the task they had just completed, they were asked to respond
on a 7-point Likert scale (1 = strongly disagree, 7 = stronglyagree) to
four statements: “I found it easy to identify low shear stress regions”,
“I was able to perform the task ef�ciently”, “I am con�dent I found
all the low shear stress regions”, and “I am con�dent all the places I
marked are really low shear stress.”

At the end of the session, each participant was verbally asked which
visualization style (i.e., 2D or 3D) they preferred and why,and asked
whether they had other comments, questions, or feedback. Each ses-
sion lasted approximately 40 minutes.

6.4 Experimental Design & Analysis

The study was a mixed between- and within-subject design with the
following factors and levels:

� dimensionality of representation (2D or 3D);

� color mapping (rainbow or diverging).

Dimensionality of representation was a within-subject factor and
color mapping was a between-subject factor.

Our dependent measures were the fraction of low ESS regions iden-
ti�ed, the number of false positives (i.e., non-low ESS regions identi-
�ed as ESS), and the time to complete a diagnosis. Because thetime to
complete a diagnosis was impacted by the number of low ESS regions
a participant identi�ed in each image as well as the total number of low
ESS regions present in each image, we additionally comparedpartic-
ipants' performance in terms of the average amount of time taken to
identify a low ESS region (i.e., total time spent on an image divided
by the number of low ESS regions identi�ed).



Fig. 7. Average percent of low ESS regions identi�ed broken down
by 2D and 3D representation, and color. Error bars correspond to
the standard error and the asterisks indicate results of statistical sig-
ni�cance. Participants were more accurate in 2D and when usi ng the
diverging color map.

To generate the two accuracy-related measures, each participant's
responses (regions they encircled with the mouse cursor or clicked
on) were compared against answer keys generated by cardiovascular
imaging specialists. After each trial, we also collected four subjective
measures as described in the previous section.

Half of the participants started with a 2D representation and half
with a 3D representation. Similarly, half of the participants started
with a left coronary artery tree and half started with a right. The or-
derings of data sets (three hearts) were counterbalanced using Latin
Square design. Genders were balanced between the two color mapping
conditions and between tasks starting with 2D and 3D representations.

The time to complete a diagnosis followed a lognormal distribu-
tion. We log-transformed these data as is common practice and an-
alyzed it with a t-test. For the remaining measures, we used non-
parametric tests: the Wilcoxon signed rank test for within-subject
comparisons, and the Mann-Whitney U test for between-subject com-
parisons. To guard against Type I errors, we applied the Holm's
sequentially-rejective Bonferroni procedure [41] to the analyses of the
subjective responses and to the additional analyses that did not corre-
spond directly to our two stated hypotheses.

Because of the substantial qualitative differences between the 2D
and 3D conditions, we analyzed the effects of color separately for each
of these two conditions.

6.5 Results

Preliminaries A contrast analysis of the fraction of low ESS re-
gions identi�ed across the 6 test tasks revealed no signi�cant learning
effects (Z = � 21:5, p= 0:47)4. That is, the participants' ability to cor-
rectly identify low ESS regions did not change signi�cantlythrough-
out the experiment. We thus include results from all 6 tasks in our
subsequent analyses.

Accuracy We observed a main effect of the dimensionality of
representation on the fraction of low ESS regions identi�ed(Z =
� 115:5, p < 0:001): participants correctly identi�ed 77% of low ESS
regions in 2D images, but only 56% in 3D (see Fig. 7). In both 2D

4Z = z-score for the Wilcoxon signed rank test, p = p-value.

Fig. 8. Average percent of low ESS regions identi�ed broken down
by 2D and 3D representation, and left and right artery systems. Error
bars correspond to the standard error and the asterisks indicate results
of statistical signi�cance. In 3D, users were less accurate identifying re-
gions in the most complex data sets (i.e., left artery systems). Whereas
in 2D, performance was the same regardless of task complexity.

and 3D conditions, we also observed signi�cant effects of color map-
ping on the fraction of low ESS regions identi�ed. For 2D images,
participants in the diverging condition found� 47% more low ESS re-
gions than the participants in the rainbow condition (U = 1, p< 0:001,
r = 0:83)5. For 3D images, the diverging color map resulted in an
� 82% improvement over the rainbow color map (U = 7, p = 0:001,
r = 0:74).

For the top performing combination (2D with non-rainbow), the low
ESS regions that were not identi�ed by participants were generally the
smallest in area of all the regions in a given data set. These regions
were also very close to the diverging point in the color map bordering
between “low ESS” and “normal”. In the other conditions, there was
no observed regularity in the low ESS regions missed.

We observed a negligible number of false positives (only 6 instances
across all users). These false positives occurred in both color schemes,
but all occurred only in 3D representations.

We additionally examined the difference in accuracy between the
left and right coronary artery branches as shown in Fig. 8. The left
branch systems are more complex due to additional bifurcations in-
herent to the anatomy. In our data sets, the left artery systems ranged
from 7 to 10 branches (M = 8)6 and the right artery systems ranged
from 4 to 7 branches (M = 6). On average the left artery systems
had 25 low ESS regions and the right artery systems 17 low ESS re-
gions. There was no signi�cant difference in accuracy between these
data types in 2D (Z = � 1:57, p = 0:117). However, in 3D partici-
pants were signi�cantly less accurate when identifying regions in left
artery systems than in right systems (Z = � 3:35, p = 0:001). This
provides evidence that in 3D the performance accuracy decreases with
increased data complexity.

Ef�ciency On average, participants spent less time per image in
the 2D condition (M = 56 seconds) than in the 3D condition (M =
73 seconds) and this difference was statistically signi�cant (t(21) =
� 2:52, p = 0:021)7 (see Fig 9). In the 2D condition, we also observed

5U = Mann-Whitney U measure, p = p-value, r = Z /
p

N
6M = mean.
7t(#) = t-test with # of participants.



Fig. 9. Average total time spent on each image broken down by 2D
and 3D representation, and color. Error bars correspond to the stan-
dard error and the asterisks indicate results of statistical signi�cance.
Participants completed tasks more quickly in 2D than 3D.

a signi�cant effect of color mapping on the average task completion
time (t(21) = � 1:57, p = 0:013): participants spent less time on im-
ages using the rainbow color map (M = 47 seconds) than on images us-
ing the diverging color map (M = 65 seconds). We saw no such effect
in the 3D condition (t(21) = � 0:351, p = 0:741). Even though par-
ticipants completed 2D images more quickly with the rainbowcolor
map, they had poor accuracy as described in the previous section.

Therefore, we next look at the average amount of time taken toiden-
tify a low ESS region (i.e., total time spent on an image divided by the
number of low ESS regions identi�ed). As illustrated in Fig.10, there
is a signi�cant difference between participants' performance in 2D and
3D (Z = 115:5, p < 0:001) with participants identifying regions more
quickly in 2D (M = 2.5 seconds per region) than in 3D (M = 7.8 sec-
onds per region). There is no signi�cant effect of color mapping in 2D
with respect to this measure (U = 44, p = 0:439,r = 0:169) indicating
that the utility and effectiveness of the 2D representationoutweighs
the effect of color in regards to rate of identifying regions. However,
we did observe a signi�cant effect of color mapping in 3D (U = 18,
p = 0:009, r = 0:567) with participants identifying regions approxi-
mately twice as fast with the diverging color map. Thus the effect of
the rainbow color map on task ef�ciency has a greater impact in 3D
than in 2D.

Subjective Responses When examining the subjective state-
ments, statistically signi�cant differences were observed between the
2D and 3D representations.

As shown in Fig. 11, on a 7-point Likert scale (1 = strongly dis-
agree, 7 = strongly agree) participants indicated that on average it
was easier to identify low ESS regions in 2D than in 3D (Z = � 75:5,
p < 0:001). They also reported that it was more ef�cient to identify
regions in 2D (Z = � 72:5, p < 0:001), and that they were more con�-
dent they found all the low ESS regions in 2D (Z = � 68:0, p< 0:001).
There was no statistically signi�cant effect of dimensionality of pre-
sentation on participants' con�dence that what they markedas low
ESS were in fact really a low ESS regions (Z = � 33:5, p = 0:146).
This is consistent with their actual performance: as reported earlier,
we observed very few false positives throughout the study.

We observed no statistically signi�cant effects of color scheme on
any of the participants' subjective responses. This indicates that the
participants thought they did well using the rainbow color map even

Fig. 10. Average rates of seconds per region to identify broken
down by 2D and 3D representation, and color. Error bars correspond to
the standard error and the asterisks indicate results of statistical signi�-
cance. Participants were more ef�cient in 2D, and in 3D there was a sig-
ni�cant difference in participant performance between col or schemes.

when in reality they did not perform as well as the participants who
used the diverging color map.

6.6 Discussion

The results fully support our �rst hypothesis: participants missed
fewer low ESS regions in 2D than in 3D and they completed the tasks
more quickly (both in terms of total time and when comparing times
spent per low ESS region identi�ed).

This was also re�ected in the verbal question portion at the end of
the study sessions in which 18 out of the 21 participants saidthey pre-
ferred the 2D representation citing it was “easier”, “more ef�cient”,
and “better for viewing the data since all the data is visibleat once”.
Of the 3 participants who preferred the 3D representation, 2of the
participants verbally acknowledged that the 2D visualization was bet-
ter and more ef�cient for completing the task but chose 3D as their
“preferred” representation due to aesthetics.

The results also partially support our second hypothesis: in both 2D
and 3D conditions participants who were presented with the data using
the diverging color scheme made fewer diagnostic mistakes than those
who saw the same data presented in the rainbow color scheme. The
ef�ciency results are less equivocal: even though the rainbow color
scheme resulted in faster total completion times in 2D, controlling for
the number of low ESS regions identi�ed, we saw no performance dif-
ferences due to color mapping in 2D, but in 3D we observed partici-
pants being nearly twice as slow on a per region basis with therainbow
color mapping than with the diverging.

Part of the reason why the 2D representation is ef�cient is because
people are able to easily “read” across the image and mark regions in
a systematic manner. We concluded this based on the observedorder
in which participants identi�ed low ESS regions and statements from
participants during the verbal feedback section. In contrast, there is
no obvious strategy for “reading” across the 3D representation. The
3D visualization also requires one to rotate and interact with the im-
age, thus it takes longer for someone to view all the data. In addition
to participants verbally complaining about the added interaction, par-
ticipants had a dif�cult time remembering where they had previously
identi�ed a region of low ESS in the 3D representation. Thus in or-
der to make the 3D visualization more effective, one would need to
develop a good “mark-up” strategy such that a person knows what re-



Fig. 11. Averages of subjective responses broken down by 2D and
3D representation, and color. The four statements are rated on a 7-point
Likert scale (1 = strongly disagree, 7 = strongly agree), and the asterisks
indicate results of statistical signi�cance. Participant s felt it was easier
and faster in 2D, and they felt more con�dent in 2D.

gions they have already identi�ed or arteries already inspected. The
2D representation also makes it easier to identify regions of low ESS
by easily exposing complex 3D features, such as artery bendsand bi-
furcation, where low ESS regions are likely to occur. Indeed, our re-
sults demonstrated that as the complexity of the tasks increased, par-
ticipants were able to maintain their accuracy in the 2D condition, but
not in the 3D condition.

Additionally, based on the results of this work, our medicalpartic-
ipants and collaborators are now convinced of the utility ofa 2D data
representation and appropriate color map choice:

“Three-dimensional volume visualizations provide the ability to vi-
sually follow the connections between different branches.HemoVis
presents a surprisingly elegant solution to this problem in2D by sim-
ply and cleanly plotting individual 2D multi-spectral presentations of
all vessels concurrently, and simply superposing a graph showing their
connectivity. In this manner I think the visualization is a simple yet
elegant, and powerful solution for conveying a mix of innately 2D
(stenosis degree) and innately 3D (endothelium) information.”

“We have struggled for many years to �nd a way to display
anatomic (i.e., geometric) data and endothelial shear stress data in a
comprehensive and intuitive manner. I think HemoVis elegantly solves
this problem and should be useful to clinicians and researchers alike.
HemoVis is especially helpful in highlighting critical areas of low en-
dothelial shear stress and assessing their relationship tothe surround-
ing anatomy.”

“It was surprising to �nd that different color mapping techniques
can render the task of identifying low shear stress regions less ambiva-
lent. By enhancing the perception of identi�able patterns in this com-
plicated problem that spans multiple independent scienti�c disciplines
and hence differently trained scientists, it becomes that much easier to
reach signi�cant conclusions. One can only wonder in just how many
other instances we make our task more dif�cult than it needs to be
simply by maintaining the status quo. I for one am now more open to
consider visualization an integral aspect of research, particularly be-
fore dismissing hypotheses that rely on identifying complicated data
patterns.”

7 CONCLUSIONS & FUTURE WORK

Through our formative qualitative user study, we have developed a
task taxonomy for blood �ow visualization and we have developed a
new 2D tree diagram representation of coronary artery trees. The re-
sults of our quantitative study demonstrate that the 2D representation

is not sensitive to increased complexity in the task and users are more
accurate and ef�cient at identifying regions of interest ina 2D repre-
sentation than a 3D representation, and that the rainbow color map can
signi�cantly reduce a person's accuracy and ef�ciency.

We are continuing to develop HemoVis based on the principlesand
results of this study. Also, even though the 2D representation is more
accurate and ef�cient for our tasks, having a 3D representation is still
essential for surgical planning. We will investigate the most effective
ways to connect these two representations through linked views in fu-
ture work. We also plan to investigate other user interface designs and
interactions for HemoVis. For example, if a doctor were in a clini-
cal setting that allowed for detailed study of the data and interaction,
could adding �lters to narrow the range of ESS focus or adjustment of
color scale parameters be useful.

The work presented in this paper is broadly applicable to other do-
main applications as well as visualization in general. The new 2D tree
diagram representation utilized in HemoVis is applicable to the visual-
ization of other branched anatomical structures (e.g., cerebral and ve-
nous arterial systems, pulmonary systems) and general �uiddynamical
pipe structures (e.g., engineering). In terms of general visualization,
this work serves as both an example and template of how to convince
users of good visualization practices. In this case, a success story of
changing users' opinions with particular regard to appropriate dimen-
sionality of data representation and color choice. This work not only
shows a real world example demonstrating just how signi�cant an im-
pact rainbow color can have on a user's task, but also a way forother
researchers to counter this issue by demonstrating to theirusers how
color impacts their task performance.
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