Evaluation of Artery Visualizations for Heart Disease Diagnosis
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Fig. 1. Left: Traditional 2D projection (A) of a single artery, and 3D representation (C) of a right coronary artery tree with a rainbow
color map. Right: 2D tree diagram representation (B) and equivalent 3D representation (D) of a left coronary artery tree with a
diverging color map.

Abstract — Heart disease is the number one killer in the United States, and nding indicators of the disease at an early stage is
critical for treatment and prevention. In this paper we evaluate visualization techniques that enable the diagnosis of coronary artery
disease. A key physical quantity of medical interest is endothelial shear stress (ESS). Low ESS has been associated with sites of
lesion formation and rapid progression of disease in the coronary arteries. Having effective visualizations of a patient's ESS data is
vital for the quick and thorough non-invasive evaluation by a cardiologist. We present a task taxonomy for hemodynamics based on
a formative user study with domain experts. Based on the results of this study we developed HemoVis, an interactive visualization
application for heart disease diagnosis that uses a novel 2D tree diagram representation of coronary artery trees. We present the
results of a formal quantitative user study with domain experts that evaluates the effect of 2D versus 3D artery representations and
of color maps on identifying regions of low ESS. We show statistically signi cant results demonstrating that our 2D visu alizations are
more accurate and ef cient than 3D representations, and tha t a perceptually appropriate color map leads to fewer diagnostic mistakes

than a rainbow color map.

Index Terms —Quantitative evaluation, qualitative evaluation, biomedical and medical visualization.

+

1 INTRODUCTION

In the United States, the leading cause of death is headshsesult-
ing in over 600,000 deaths per year [24]. Early preventioth ta@at-
ment is vital for saving lives, and visualization plays asestgial role
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for patient diagnosis in cardiovascular imaging. A new from@sive
diagnostic technique under development uses Computed graiploy
Angiography (CTA) data from patients combined with blooav sim-

ulations to calculate hemodynamic risk factors, in patéc&ndothe-
lial Shear Stress (ESS), in coronary arteries [40]. Vigaaidbn meth-
ods of this data are of great value for this emerging reseamdtave
the potential to lead to faster, more accurate heart dis#iagaoses.

Current visualizations techniques, as shown in Fig. 1)(lefe ei-
ther a 2D cylindrical projection of a single artery or a 3D negen-
tations of the coronary artery tree. In both cases, ESS ipathmo
the surface using a color encoding, typically with a raintfow'spec-
trum”) color map. Both representations have their advagagd dis-
advantages: 2D allows one to see all the data at once, butraical
information is lost both in the shape of a vessel and in hov éadi-
vidual vessel connects to other branches. 3D preserveséteraical
structure, but introduces issues of occlusion and reghinegan inter-
action to rotate the model in order to see all the data. Thedomental
visualization issue is how to display a scalar quantity — ESBat is



parameterized on the surface of a three-dimensional $ptatiature —
coronary artery trees — using effective visual encodings.

In collaboration with doctors and researchers in cardiovias
imaging and applied physics, we set out to investigate tfectfe-
ness of different visualization strategies for this pramble We rst
conducted an informal qualitative user study with our donediperts
to develop a task taxonomy and determine their current liaien
practices and needs. During this process we developed HemaV
novel 2D tree diagram representation that presents allateat once
while still encoding pertinent anatomical information kuas vessel
circumference and branch structure (Fig. 1, B). Despitéipedeed-
back about HemoVis, we encountered resistance from useverio
only with the 2D representation and to use a diverging colap tat
emphasizes features in the data more effectively. To ilgegstthese
issues we conducted a formal quantitative user study witticakdo-
main experts to evaluate the effectiveness of 2D versus gi2senta-
tions, and the effect color has on task completion perfonaan

The rst contribution of this paper is a task taxonomy for hay-
namics that is based on a qualitative user study with mediqaérts.
Guided by this task analysis, our second contribution isisgn of
HemoVis, an interactive visualization application for hiefisease di-
agnosis that uses a novel 2D projection and layout for attees. The
third and main contribution of the paper is a quantitativerustudy
with domain experts that shows statistically signi carguks demon-
strating that our 2D representations are more accurate faridngé
than 3D visualizations. In addition, the performance in 3bpd with
an increase in the complexity of what is being examined wthiée2D
representation is insensitive to it. Our study also showsdpercep-
tually appropriate color map leads to fewer diagnostic akiss than
a rainbow color map both in 2D and in 3D, and that task comuteti
times were nearly twice as slow with the rainbow color mapbn Bo
the best of our knowledge, this is the rst quantitative exaion of the
effect of spatial and color encodings for a domain task witdital
professionals and real patient data.

2 RELATED WORK

Vessel visualization:
ily visualized with 3D representations [7, 13, 28, 31] witakr quan-
tities such as ESS mapped onto the surface using color ergi2].
In 2D, a common technique is to generate a Curved Planar Rafor
tion (CPR) visualization of the vascular structure, whardraage is
generated by taking slices along a generated centerlindiapldying
the intensity units [15, 44]. A drawback of CPR is that it go®s
limited information about the artery wall, thus not givinglear indi-
cation of how wide or narrow the vessel is at any particulantpoor
convey ESS data for the entire artery. There are also othgr@jec-
tion techniques all with the goal of attening the structiméo a single
view [39, 51, 52]. 3D representations have the problem ofusicn
that does not allow a doctor or researcher to see all the atdtane-
ously. Techniques have been developed to improve 3D rapesms
using visual cues such as shadows and transparency to iengpatial
acuity in 3D [20, 34] or to include 2D data [45]. In our 2D repee-
tation, all the necessary data including ESS is displayec fmedi-
cal practitioner to assess the severity of disease withiaratomical
frame of reference.

2D vs. 3D visualizations:
measure to determine the effectiveness of visual reprasens and
data encodings [18, 30]. A variety of case studies and foumsat
studies have demonstrated that 2D data encodings andeapaens
are generally more effective than 3D for tasks involvingtispanem-
ory, spatial identi cation, and precision [9, 48]. Excelteexamples
exist in the realms of vector eld [11, 21, 25] and geospatialializa-
tion [2, 4, 17, 19, 29]. Although 2D is typically more effeai there
are strategies to improve 3D performance, such as usingsiooland
perspective [42, 50] or stereographic displays [47]. Ourkwoves-
tigates the effectiveness of 2D versus 3D artery represensain the
context of heart disease diagnosis by medical experts.

Color map evaluations: Choosing the appropriate color map
is essential for the effective display and analysis of qtetite data.
Based on fundamental human perceptual principles and the df/
data being displayed (sequential, diverging, or categtrithere are
formal and systematic ways to make an appropriate colocehmsed
on the task at hand [14, 27, 33, 38, 46]. Based on laborat@nysisd-
ies, speci c guidelines are available for the effectiveigasof color
maps [32, 36, 49]. A particular color map of interest is thalaw
map which, despite being a favorite color map across thesege[5],
is poorly suited for most data tasks and can prove misleaslimge it
is not perceptually ordered and isoluminant [5, 23, 38, 37, @uan-
titative studies con rm these facts [16, 35] and proposddvevays
to design color maps and discern when isoluminant maps &edbkal
Despite this general body of knowledge, there has beep bttidy
on the effects of the color map within a real-life domain &gion.
We present a quantitative evaluation of the rainbow magcesf on
task accuracy and ef ciency by domain experts within a reahein
application.

3 SCIENTIFIC BACKGROUND

Atherosclerosis, the disease focused on in this reseacchy®when
plaque forms in the arterial wall, causing possible obsimamf blood
ow as well as changes in the outer dimension of the artentesSi
of plaque depositgtherosclerotic lesiosform where the endothe-
lial cells that line the arterial wall exhibit increased ammation and
permeability to lipid molecules such as LDL (i.e., bad clstéeol).
Over time these plaques can either become a low-risk typeigha
quite large and causes a narrowing of the artetgr(osiy or a high-
risk type that can rupture, potentially causing a heartchittarhese
high-risk deposits are not detectable with conventionagimg. In
the United States, approximately 300,000 deaths per ye&ar dom
coronary artery disease an@®0% are caused by rupture of these high-
risk plaques [10]. However, recent research has shown tbasaf
low endothelial shear stress (ESS), i.e., the frictionatdoof blood
on the artery wall, stimulate the development of these higje-
sions [8, 43], and that these lesions primarily appear whegee is

Vessels or branched systems are prima,cjisturbed ow, e.g., at artery bifurcations, bends, andaeg of in-

creased diameter. Thus ESS is a powerful indicator of pléojuea-
tion and disease progression.

However, it is impossible to directly measure EBSvivo for an
entire arterial tree. As a consequence, one needs to relipod low
simulations to calculate a patient's ESS based on theiryagieome-
tries. Combining this blood ow simulation with a patient3D re-
construction of their coronary arteries allows doctors étedt areas
of low ESS, identify plaque sites non-invasively, and tate/pntative
measures before a heart attack occurs [40]. In order to hanlegs-
cal validity and develop visualizations speci cally tatgd at the most
important diagnostic tasks, we conducted a formative tptale user
study to determine a user's tasks, what data needs to bdizeslizo
perform these tasks, and what are the best ways to visuhkzest
quired data.

4  FORMATIVE QUALITATIVE USER STUDY
4.1 Overview & Logistics

The rst goal of this study was to characterize the medical a&r
search problems being addressed by the participants aindpleei c

Formal evaluations are a valuabledomain tasks related to atherosclerosis. This was achieyembn-

ducting a series of semi-structured interviews with 10 roaldioctors
and researchers representing the potential future usesaobf data.
All the participants were interviewed at and af liated wiBrigham
and Women's Hospital (Boston, MA). In an attempt to cover @t
an audience as possible, study participants ranged in ageeg ex-
perience level, education background, job seniorityjcdihversus re-
search focus, and department (radiology versus cardiplogy
Each participant was interviewed and asked the same setesf qu

tions to gather suf cient information on their backgroumtaexperi-
ence, research interests, knowledge of hemodynamics,hairdcur-
rent work ow goals and tasks. Each participant was then shaw



Table 1. Domain tasks, broken down by clinical versus research focus,
of participants based on a formative qualitative user study.

[ ID [ Task | Clinical | Research|
1 | Identify stenosis or blockage X X
2 | Identify regions of low ESS X X
3 | View all ESS data for heteroge- X X
neous patterns

4 | Study blood ow (velocity) pat- X
terns

5 | Identify regions of blood recircuy X
lation

6 | Investigate other physical vari- X
ables of blood ow

7 | Follow patient's disease progres- X X
sion

series of images covering 2D and 3D representations of ERSd&-
sired outcome was, based on the resulting feedback, to atisevéol-
lowing questions: What data should be shown to accompliskstaf
clinical importance? What are the optimal 2D representaoWhat
are the optimal 3D representations? Should the data be eddo@D
or 3D? And what color schemes are best to aid the individutdsk
completion?

4.2 Task Taxonomy

The participants' jobs fall into two broad categories: wai diagnos-
tics and fundamental research. The former represents thdisélu-
als who work on making clinical diagnoses for speci ¢ patgrand
the latter represents individuals who work on investigatime funda-
mental causes of heart disease. Some individuals fall iatb bat-
egories (e.g., doctors who split their time between medicattice
and research). Table 1 represents all the domain taskslgitpdrtic-
ipants and category of individuals that cited the task. Rattegories
of individuals need to accomplish the same basic set of tas&sn-
tial to the immediate diagnosis of patients based on fathatshave a
proven link to atherosclerosis (i.e., low ESS, artery getloyhe How-
ever, those with a research focus care about further expgldhie data
to investigate variables or aspects not necessarily witiowep link to
disease.

Each of these domain tasks can be abstracted to fundameatal
lytic tasks presented by Amar et al. [1]. Tasks 1 and 2 comedo

nding extrema The clinical diagnostics study participants expounde

on the need for these tasks to be accomplished in a quick anerf
manner with minimal cognitive effort for rapid diagnosistioé patient.
These tasks are usually done inside or just outside a prozedam
to expedite taking preventative measures (e.g., inseofiarstent). In
a research setting the time pressure was lower. Task 3 porés to

Fig. 2. The three different cylindrical projection techniques presented
to users during the formative qualitative user study. Top Traditional
cylindrical projection. Middle: Projection with circumference mapped to
image height above the x-axis. Bottom Projection with circumference
mapped to the width of image symmetric on centerline (preferred pro-
jection by users).

variation on this cylindrical projection in which the widéguals the
circumference of the artery at the cross section.

During the user study, the rst two participants in the post-
evaluation interview commented on the middle cylindricaljection.
They both said that it was slightly confusing to them and,tidten
viewing the image, they were mentally re ecting the imagemthe
x-axis to make it symmetric. Upon presenting them with theug®-
cylindrical projection based on their feedback depicteBim 2 (bot-
tom), they both commented that this was a superior mappirtgs T
projection maps the circumference of the artery at the sesson to
the height, and centers it along a centerline. For the reseaiof the
study we presented all three projections to the particgpant

All the participants preferred the pseudo-cylindricaljpotion map
(Fig. 2 bottom). When asked whether this projection is csimg, they
replied “no”. Although not exactly reproducing the real gesiry, the
representation is able to encode enough geometric infaymet show

3he user the relationship between geometry and ESS as welers

stenoses occur. This representation is also intuitivelfioiceans since
the 2D mapping mimics what one would see if an artery is cerop
(“butter ied”) for ex vivostudies.

Tree Diagram Layout  Continuing with 2D representations, for
tasks 1-3, all of the study participants were presented awtisualiza-

clusteringof the data. In a clinical setting, this task is not as esakntition of the artery tree in with each node was representafiea artery
or of the same importance as 1 or 2, but would be necessaryagr d and branches indicative of bifrucations (Fig. 3). When enésd with

nosis in complicated cases. Task 4-6 are abulihg anomaliesin the
data. In these cases time is not a factor, and being able tgrarthe
data carefully is the primary goal. Finally, task 7 is@relationtask,
requiring comparison of multiple data sets, if availabledgatient, in
order to follow the progression of the disease.

4.3 2D Representations

Projections
focused on 2D projections of the arteries. This is relevantasks
1-3 (see Table 1). All but one of the participants had beerossg
to reading ESS values from a cylindrical projection repnésigon of
an artery, and all were familiar with ESS in general. Inigigivo
different types of projections were shown to participarkig (2 top
and middle). The top image is a traditional cylindrical gaijon in

the hierarchical tree layout in Fig. 3 (top), no one had eeensany-
thing like it before and all except one individual respondeat they
greatly preferred this data representation and found futisé&nlike

CPR visualizations that only include two locations of theegr wall

[15, 44], this tree diagram not only shows the artery stnechut con-
veys the length and width of each vessel. The most commoméeid
on the tree diagram was the great bene t of being able to dabel

The rst portion of the qualitative user study wasdata at once without the usual occlusion challenges fou®irepre-

sentations, and being able to display and compare multgike skts at
the same time (task 7). The two most commonly cited scenatiese
this would be useful are for viewing a patient's data with tieod
ow simulation adjusted to simulate a patient at rest andeaghtened
physical exertion (i.e., low and high ow rates), and forwiag mul-
tiple image acquisitions of a patient over time in order tewiand

which the length of the image is based on the length of theyartecompare the simulation output for each. This latter scenaould aid

and the width is arbitrarily chosen. The middle image repmées a

the doctor in observing the progression of disease over. time



Fig. 3. Original and nal tree layout schemes. Top Initial design of tree
layout. Bottom Final tree layout based on feedback from users to make
it more anatomically representative.

As shown in the initial sketch (Fig. 3 top), the study sutgestre
presented with some possible interactions with the trea befud-
ing the ability to open and close branches, move branchemdrihe
screen, and interactively crop the color scale. All of theipigants
said that closing the branches is not useful since they awsaant to
see the other data sets and keep the data in context. Eveajsme
stated that being able to move or drag branches around therss
not a good idea since they want to maintain the same statioraical
structure when viewing the data for context.

All of the user study participants, except the research ptatici-
pants without advanced degrees, noted that the tree wascwbtely
conveying the anatomical information. When the initialigagFig. 3
top) was created, the branches were arranged to t the spak a
able on the screen. Independent of each other, the partisipeere
asked to describe or draw what adjustments they would mate&te
an anatomically “correct” version of the tree. All of thesalividu-
als made the same recommendations. For the vertical amemge
the branches should be ordered from major to minor arterigstihe
placement of each descending branch point below the “pgavessel
(and if descending branch “superior”, i.e., branch poimatamically
go upwards, place it above the parent vessel). If there avevary
close major bifurcations, then present it in the tree diagas a trifur-
cation. Finally, always have the tree diagram lines angtetidrawn

ogy. Finally, to evaluate whether a portrait or landscaps@ntation
was more useful, the participants where shown a tree diageane-
sentation in each orientation. All the participants prefdrthe land-
scape orientation depicted in Fig. 3 (bottom) since it wasitive to
“read” the visualization and ow direction from left to righand com-
parisons were easier for multiple data sets when stackeidaiéy.

4.4 3D Representations

The next portion of the formative qualitative user study feasised on
the 3D display of ESS data, and which of 2D or 3D display teghes

may be better for the completion of the domain tasks. All efglrtic-

ipants had previously seen 3D representations of ESS as argizs
with ESS mapped in color onto the exterior (see Fig. 1, C). pitagp

ESS in 3D is useful since it maintains the true geometry aradioamy

a doctor is accustomed to seeing, and makes it easier tdatamtise
knowledge back to a surgical setting. A common practicedcity

the study participants and visible in the literature, is hoase stan-
dard viewing angles that a doctor or surgeon would be intedeis.

However, to view all the data effectively at the same timeunexs in-

teractivity or animated rotation. 2D projections of ESS;tsas those
discussed in Secion 4.3, have the advantage of being abfevoal

the data without occlusion, to display all the data in a ststiate, and
to easily compare multiple data sets.

4.5 Color

A portion of the qualitative study was devoted to determing best
color schemes to encode scalar ESS data in either 2D or 3@pExc
for this portion of the study, all images presented during study
were created using a rainbow color scheme. Rainbow is tinelate
color map used in the medical literature, and we did not waapar-
ticipants to be distracted by unusual colors when askingitagpatial
data encoding techniques.

A total of eight carefully designed simple color schemesenme-
sented to the users (see Fig. 4). The priority was designsghame
that brought out the data structure to accomplish taskgpai8cularly
the data which is not as visible when viewed with the standairdow
map [22]. Four of the color schemes are based on divergirgy tal
bles from Cynthia Brewer's ColorBrewer [6]. The other twoeliging
color schemes were designed based on the concept of lureirmec
ing easy to read with it encoding the scalar ESS value andahithma
only highlighting the highest or lowest ESS values. Alsduded was
a simple luminance scheme with no color. The color schemes pr
sented to the study participants are shown in Fig. 4: a rainap
[A], a desaturated rainbow map with yellow at the mid-poiatiter
than the standard green) [B], a diverging map from blue towgd
white at the divergence point [C], a diverging map from bloedd
with cream at the divergence point [D], a sequential gregsozap
[E], a diverging map from red to black with white at the divenge
point [F], a diverging map from blue to black with white at ttiiger-
gence point [G], and a diverging map from purple to orangé witite
at the divergence point [H].

Every study participant except one said that they liked &iebow
scheme the best. The reasons for this are that it is what tiecyised
to seeing”, the colors are more saturated than those in tiez stales
making it “easier to see”, it is the “most aesthetically gieg” of the
choices, and that it is the “easiest to directly determimerthmerical
value” of the ESS based on matching the color to the scale.eiexy
the participants were astute and saw, after viewing all therenaps,
that red is the most eye-catching as it has a “pop-out” efjctMul-
tiple study participants acknowledged that their primasktis iden-
tifying regions of low ESS so it would make sense to have tieasr

in the same direction as the blood ow (does not make sensewe h of concern be red. Thus they suggested a more useful versitie o

blood ow “upstream”) which also eliminates the need foreditional
arrows.

rainbow scale would be to invert it, so that red indicates E®S and
blue high ESS.

The nal diagram is shown in Fig. 3 (bottom). It should also be Examining the non-rainbow schemes, the simple grayscaesh

noted that the sample data set we used for the study has aclarge
plex branched structure and that the ESS data is high résolcom-

pared to a typical data set. This was chosen on purpose &segirthe
most complicated large case available with conventioreah $echnol-

great detail and subtleties in the ESS data, especially acedpto
the rainbow scale. However, most of the participants obgbtd this
scheme citing that when they see a black-and-white image ake
sume the data is raw radiological imagery (e.g., x-ray, Mft,) and



Fig. 4. Color schemes presented during the qualitative user study. The
rainbow scheme (A) was preferred by most since it is what they are
accustomed to viewing. The next most popular scheme was the red-
black diverging scale (F). The grayscale image (E) was unanimously
disliked since participants assume black-and-white images to be raw
radiological data, while color indicates that the data has been processed
or simulated.

not simulated data. When they see a false-color scale, theyedi-

ately make the assumption that it is processed and/or sietlitiata
and not raw imagery. Thus it is important to include some fafm
color when mapping data like ESS to avoid confusion.

Of the non-rainbow schemes, the one study participantsl like
best was the red-to-black diverging scale. They felt it tiel best job
of grabbing their attention to the highlighted areas of exte ESS
and showing the data structure. Although some of these Umsets
pointed out that a pure luminance scale with no color usuatlicates
raw imaging data, none of them complained or mentioned thisnwv
picking the red-to-black scale. Finally, one user liked theerging
red-to-blue schemes the best. Also, a humber of participgave
positive comments during this color design portion of thedgt ac-
knowledging that they could see more structure in the daenwising
a non-rainbow scheme, and that they would consider usingeagiing
color scheme instead in their own data analysis.

In summary, the key take-aways and lessons learned dugngith
mative qualitative user study are to keep the data reprasentas
anatomically correct as possible (i.e., choice of 2D pitijecand tree
diagram layout); that a 2D data display is more effectivedaa anal-
ysis and for comparing multiple data sets; that the bestraiioice
is a diverging color scheme utilizing red to highlight thegimns of
greatest interest; and that a pure black-and-white coluerse should
be avoided since users associate it with raw radiologidal. dss will
be discussed in the following section, we applied all theseciples
in the development and design of HemoVis.

5 HEmMoVis

Using an iterative task-driven design based on our forraatvali-
tative user study, we developed a 2D interactive visuatinatalled

Fig. 5. HemoVis in the “tree” mode displaying a patient's left coronary
artery tree with color mapped to ESS.

Fig. 6. HemoVis in the “individual” mode displaying a single artery with
small tree diagram for navigation in the lower right.

sented in which each node is representative of an artery acidlme
segment representing a bifrucation. Each artery is digplaging the
2D pseudo-cylindrical projection discussed in Sec. 4.Bhsled with
its anatomical name, and has its ESS values encoded with ddie
color and size scales are displayed to the left of the tregralia. The
upper right of the screen displays the relevant metadatthéopar-
ticular data set. The interaction techniques implementedased on
expert feedback from the qualitative study and follow-ugcdssions.
The user is able to simultaneously view additional simatatata sets
for the same patient by clicking the small triangles. A usar mouse-
over the images to display exact quantitative ESS and ciferance
measurements. If the second data set is open for a partiaréy,
then a cross-hair cursor will appear on the image oppogita fihe
mouse cursor indicating the equivalent position. One cso ehange
the desired color mapping by selecting one of the colorece®ax
the lower left corner. To switch modes, there are two modéohat
in the upper left. In the alternate individual mode, only areery
is displayed at a time allowing the user to take care at stgdpar-
ticular arteries in high resolution. In this mode there isoah small
non-interactive version of the entire coronary tree in thedr right
corner to help keep the displayed artery in context as webkeassed
to navigate the branches by clicking them. HemoVis is im@etad
in Processind.

The data for both our qualitative and quantitative (Secs@y stud-

HemoVist(Figs. 5 & 6). The design is based on the qualitative evaluies comes from the Multiscale Hemodynamics Prdje€he patients'

tion with additional feedback from select users and the tasgnomy
with a focus on the tasks that are most relevant for bothadirind
research settings (1-3 & 7 from Table 1) as described in S2c. 4
HemoVis has two viewing modestree (Fig. 5) andindividual
(Fig. 6). In tree mode, a tree diagram of the arterial systemreé-

1Available online at http://www.seas.harvard.edbprkin/HemoVis

coronary geometries are obtained from CTA data acquirel avB20
detector row Toshiba AquilionONE scanner. The data is 4Dnfe
series of cardiac cycles which is then registered into deinglume.
The data is then semi-automatically segmented using itfiéal Im-

Zhttp://www.processing.org
Shttp://hemo.seas.harvard.edu



ages Inc). The end result is a series of 3D surfaces of the apdr
coronary arteries. These geometries are then loaded intBHAJa
multi-physics and multi-scale code combining MolecularnBsnics
(MD) with a Lattice Boltzmann (LB) method, to model the bloasv
through the static geometries [26]. The simulation was gingia par-
allel implementation on Harvard's IBM BlueGene/L. The rié$si3D
data of the simulated blood ow and associated propertieiding
ESS.

However, despite positive feedback from users and the domeai
pert driven iterative design, many potential users wenactaht to try
the prototype because they were not convinced it was reettgibthan
a 3D representation. Also, despite expert acknowledgmanimglthe
formative qualitative study's section on color choice thaie of the
non-rainbow schemes did an excellent job of displayinguiest in
their data and presenting users with background literainre rain-
bow color map (see Sec. 2), the users were reluctant to claocesieer-
native color map to rainbow. Additionally we wanted to quittively
investigate, with this real world example, what effect dagpresen-
tation and color encoding has on task performance. As atresel
decided to conduct a formal quantitative user study to exalif a 2D
representation is more effective than 3D and if color caratfhiow
one perceives ESS features.

6 QUANTITATIVE USER STUDY

We conducted a formal quantitative user study to determimether a
2D or 3D data representation of ESS was more effective antesft

for diagnosing a patient's coronary artery disease. Wewaktted to
see if there were quantitatively measurable performarfeetsfbased
on the color scheme utilized, speci cally the rainbow aneldiverging

red/black color maps. Having an effective visualizatioimportant in

making an accurate diagnosis, but having an ef cient vigasibn is

also important in order to allow a medical professional teteapid

preventative measures if needed as well as increasinglblrespital

ef ciency. To maintain high external validity of our ressifor this

domain, we worked with medical professionals and real patata.

6.1 Hypotheses
Our hypotheses entering the user study were:

screen capture, and mouse clicks and movements were atdezto
with Screen ick.

6.3 Tasks and Procedure

The study session for each participant started with ther eid@n test,
followed by a basic survey to obtain demographic informatand

to assess their knowledge of both heart disease and uidrdigsa
The participants were then provided with two pages of bamlgd

information giving a brief overview of the project and theaneon-

invasive diagnostic tool being evaluated. Next the paéints where
given instructions for their task (“identify all low ESS liegs”) and

shown a series of images (see Fig. 1 (B) for sample 2D and (D) fo
equivalent 3D representation) for them to perform the tashkvith a

survey in-between each image to gauge their con dence devEhe
session concluded with verbal questions and feedback.

During the main part of the experiment, each participantstasvn
on a LCD screen a series of 8 images with the rst 2 serving aaia-t
ing tasks. The images alternated between 2D and 3D repatieerst
to minimize difference in learning effects between the tepresen-
tations, and the images included an evenly distributed rhigfoand
right coronary artery trees (since the left and right sidegetslightly
different anatomical structures and complexities as destnated in
the 3D representations (C and D) of Fig. 1). The data useckiSitth
and 4th images shown to the participant were also used intthend
8th images but using the alternate 2D/3D representatiotiaw ér a
larger number of measurements per participant.

The participant's task (which was explained in both priraed ver-
bal instructions with annotated sample visualizations3 waidentify
all the low ESS regions in each image. In both 2D and 3D caooruti
a person could indicate small regions by clicking on themhiite
left mouse button, while larger regions could be marked tgjreling
them with the mouse cursor. These actions left no visible&kroarthe
image, but were recorded by our software for post-experiat@mal-
ysis. In 3D, the participant could arbitrarily rotate theaeb Based
on results from our pilot run of this study, we did not enabem-
ing because it did not improve the diagnostic accuracy, tegffently
caused participants to become disoriented, losing tragkhath parts
of the image they had examined and which they had not.

After each image, the participants lled-out a questiomeavhere,

H.1 Compared to a 3D representation, a 2D data representatibn Wiased on the task they had just completed, they were askedord

result in fewer diagnostic errors and faster performance.

on a 7-point Likert scale (1 = strongly disagree, 7 = strorzgyee) to
four statements: “l found it easy to identify low shear sresgyions”,

H.2 A non-rainbow color map, speci cally a diverging color map,“l was able to perform the task ef ciently”, “I am con dent lound

will result in fewer diagnostic errors and faster perforathan
a rainbow color map.

6.2 Participants and Apparatus

In order to have a large number of medically literate paptais in the
study, we chose to use medical students. These particigtihtd the
basic medical expert training and knowledge of cardioviasdisease
and anatomy and did, therefore, have the necessary exptrtially
understand and complete the tasks presented in the studigigzants
had no prior bias towards any speci ¢ ESS visualization beeahe
non-invasive diagnostic technique being presented henetiyet a
part of standard clinical practice.

Twenty-one Harvard Medical students participated in thelyst
This included 12 women and 9 men, with a spread$ttirough 4"
year students. All participants reported having normabiceision
and were additionally checked at the beginning of theirisasssing
a standard Ishihara pseudo-isochromatic plate seriesetection of
protan/deutan (i.e., red/green) and tritan (i.e., blutyg color vi-
sion de ciencies. Each participant was monetarily compéed for
their time at the end of their session.

all the low shear stress regions”, and “I am con dent all thacps |
marked are really low shear stress.”

At the end of the session, each participant was verballydaskéch
visualization style (i.e., 2D or 3D) they preferred and wéayd asked
whether they had other comments, questions, or feedbadt &&s-
sion lasted approximately 40 minutes.

6.4 Experimental Design & Analysis

The study was a mixed between- and within-subject desigh thig
following factors and levels:

dimensionality of representation (2D or 3D);

color mapping (rainbow or diverging).

Dimensionality of representation was a within-subjectda@nd
color mapping was a between-subject factor.

Our dependent measures were the fraction of low ESS regiens i
ti ed, the number of false positives (i.e., non-low ESS g identi-
ed as ESS), and the time to complete a diagnosis. Becausarbdo

All study sessions were conducted in the same room with ickint complete a diagnosis was impacted by the number of low ES8meg
lighting, and on the same MacBook Pro 15" laptop. Participarnere a participantidenti ed in each image as well as the total hanof low
offered the choice of a wireless mouse or trackpad based achwhESS regions present in each image, we additionally compzagit-
they felt more comfortable using; every participant chdgewireless ipants' performance in terms of the average amount of tirkertao
mouse. The 2D representations were displayed using Pregiedv identify a low ESS region (i.e., total time spent on an imagyéded
the 3D representations were displayed using Paraview. dAwitieo by the number of low ESS regions identi ed).



Fig. 7. Average percent of low ESS regions identi ed broken down  Fig. 8. Average percent of low ESS regions identi ed broken down

by 2D and 3D representation, and color. Error bars correspond to by 2D and 3D representation, and left and right artery systems. Error

the standard error and the asterisks indicate results of statistical sig-  bars correspond to the standard error and the asterisks indicate results

ni cance. Participants were more accurate in 2D and when usi ng the  of statistical signi cance. In 3D, users were less accurate identifying re-

diverging color map. gions in the most complex data sets (i.e., left artery systems). Whereas
in 2D, performance was the same regardless of task complexity.

To generate the two accuracy-related measures, eachijpantis
responses (regions they encircled with the mouse cursoliaked and 3D conditions, we also observed signi cant effects docmap-
on) were compared against answer keys generated by cesdidaa Ping on the fraction of low ESS regions identi ed. For 2D ineag
imaging specialists. After each trial, we also collectearfsubjective participants in the diverging condition found7% more low ESS re-
measures as described in the previous section. gions than the participants in the rainbow condition« 1, p< 0:001,
Half of the participants started with a 2D representatiod half T = 0:83)°. For 3D images, the diverging color map resulted in an
with a 3D representation. Similarly, half of the participastarted ~ 82% improvement over the rainbow color map £ 7, p= 0:001,
with a left coronary artery tree and half started with a righbe or- = 0:74). ] o . .
derings of data sets (three hearts) were counterbalanded atin ~__For the top performing combination (2D with non-rainbov tow
Square design. Genders were balanced between the two capimg  ESS regions that were not identi ed by participants weresgalty the
conditions and between tasks starting with 2D and 3D reptatiens. Smallest in area of all the regions in a given data set. Thegiens
The time to complete a diagnosis followed a lognormal distri Were also very close to the diverging point in the color magleong
tion. We log-transformed these data as is common practideaan Detween “low ESS” and “normal”. In the other conditions, rthevas
alyzed it with a t-test. For the remaining measures, we used n N0 observed regularity in the low ESS regions missed. .
parametric tests: the Wilcoxon signed rank test for withiject ~ We observed a negligible number of false positives (onlyséainces
comparisons, and the Mann-Whitney U test for between-stibgm- ~ across all users). These false positives occurred in bdtih schemes,
parisons. To guard against Type | errors, we applied the Kolnfut all occurred only in 3D representations.
sequentially-rejective Bonferroni procedure [41] to thelgses of the ~ We additionally examined the difference in accuracy betwie
subjective responses and to the additional analyses thaiodicorre- 1€ft and right coronary artery branches as shown in Fig. 8e [Eft
spond directly to our two stated hypotheses. branch systems are more complex due to additional bifumesitin-
Because of the substantial qualitative differences betvibe 2D herent to the anatomy. In our data sets, the left artery systanged
and 3D conditions, we analyzed the effects of color sepgriteeach from 7 to 10 branches (M = 8)and the right artery systems ranged

of these two conditions. from 4 to 7 branches (M = 6). On average the left artery systems
had 25 low ESS regions and the right artery systems 17 low ESS r
6.5 Results gions. There was no signi cant difference in accuracy bemvthese

data types in 2DZ = 1.57, p= 0:117). However, in 3D partici-
Preliminaries A contrast analysis of the fraction of low ESS repants were signi cantly less accurate when identifyingioeg in left
gions identi ed across the 6 test tasks revealed no sigmtéaarning artery systems than in right systen®&= 3:35, p= 0:001). This
effects = 21:5, p= 0:47)". Thatis, the participants' ability to cor- provides evidence that in 3D the performance accuracy deesawith
rectly identify low ESS regions did not change signi canthyough- increased data complexity.
out the experiment. We thus include results from all 6 tasksur

subsequent analyses. ) o ) ) )
Ef ciency  On average, participants spent less time per image in

the 2D condition (M = 56 seconds) than in the 3D condition (M =
Accuracy We observed a main effect of the dimensionality o073 seconds) and this difference was statistically sigmitcg(21) =
representation on the fraction of low ESS regions identi@dl= 2:52,p= 0:021) (see Fig 9). In the 2D condition, we also observed
1155, p< 0:001): participants correctly identi ed 77% of low ESS n_
regions in 2D images, but only 56% in 3D (see Fig. 7). In both 2D :U = Mann-Whitney U measure, p = p-value, r=ZN
M = mean.
47 = z-score for the Wilcoxon signed rank test, p = p-value. t(#) = t-test with # of participants.




Fig. 9. Average total time spent on each image  broken down by 2D
and 3D representation, and color. Error bars correspond to the stan-
dard error and the asterisks indicate results of statistical signi cance.
Participants completed tasks more quickly in 2D than 3D.

a signi cant effect of color mapping on the average task cletign
time (21 =

Fig. 10. Average rates of seconds per region to identify broken
down by 2D and 3D representation, and color. Error bars correspond to
the standard error and the asterisks indicate results of statistical signi -
cance. Participants were more ef cient in 2D, and in 3D there was a sig-
ni cant difference in participant performance between col or schemes.

1:57, p= 0:013): participants spent less time on im-when in reality they did not perform as well as the particisamho

ages using the rainbow color map (M = 47 seconds) than on isnzgge used the diverging color map.

ing the diverging color map (M = 65 seconds). We saw no sudteff ) )
0:351, p= 0:741). Even though par- 6.6 Discussion

in the 3D condition {(21) =
ticipants completed 2D images more quickly with the rainbzmor
map, they had poor accuracy as described in the previoussect
Therefore, we next look at the average amount of time takitete
tify a low ESS region (i.e., total time spent on an image diddy the
number of low ESS regions identi ed). As illustrated in Fid), there
is a signi cant difference between participants' performea in 2D and

The results fully support our rst hypothesis: participgnnissed
fewer low ESS regions in 2D than in 3D and they completed thiesta
more quickly (both in terms of total time and when compariimgets
spent per low ESS region identi ed).

This was also re ected in the verbal question portion at the ef
the study sessions in which 18 out of the 21 participantstbaigl pre-

3D (2 = 1155, p< 0:001) with participants identifying regions moreerreq the 2D representation citing it was “easier”, “mofeient’,
quickly in 2D (M = 2.5 seconds per region) than in 3D (M = 7.8-secypq “better for viewing the data since all the data is visilence”.
onds per region). There is no signi cant effect of color magpin 2D o the 3 participants who preferred the 3D representatioaf the

with respect to this measurd ¢ 44, p= 0:439,r = 0:169) indicating participants verbally acknowledged that the 2D visuaiiratvas bet-
that the utility and effectiveness of the 2D representatiotweighs oy and more ef cient for completing the task but chose 3D feirt

the effect of color in regards to rate of identifying regiosowever,
we did observe a signi cant effect of color mapping in 3D € 18,

“preferred” representation due to aesthetics.
The results also partially support our second hypothesisoih 2D

p= 0:009,r = 0:567) with participants identifying regions approxi-anq 3p conditions participants who were presented with #e dsing

mately twice as fast with the diverging color map. Thus tHeatfof
the rainbow color map on task ef ciency has a greater impa&D
than in 2D.

Subjective Responses

the diverging color scheme made fewer diagnostic mistdiasthose
who saw the same data presented in the rainbow color schehe.
ef ciency results are less equivocal: even though the minisolor
scheme resulted in faster total completion times in 2D, rodiivtg for

When examining the subjective state-the number of low ESS regions identi ed, we saw no perfornesit-

ments, statistically signi cant differences were obserbetween the ferences due to color mapping in 2D, but in 3D we observedagpart

2D and 3D representations.

pants being nearly twice as slow on a per region basis witrein@ow

As shown in Fig. 11, on a 7-point Likert scale (1 = strongly-discolor mapping than with the diverging.

agree, 7 = strongly agree) participants indicated that @mrame it
was easier to identify low ESS regions in 2D than in 3D=( 755,

Part of the reason why the 2D representation is ef cient isabse
people are able to easily “read” across the image and maitne

p < 0:001). They also reported that it was more ef cient to identif a systematic manner. We concluded this based on the obsaemted

regionsin2DZ =
dent they found all the low ESS regions in 2D£  68.0, p< 0:001).
There was no statistically signi cant effect of dimensitityaof pre-
sentation on participants' con dence that what they marksdow
ESS were in fact really a low ESS regions£ 335, p= 0:146).
This is consistent with their actual performance: as regbdarlier,
we observed very few false positives throughout the study.

We observed no statistically signi cant effects of coloheme on
any of the participants' subjective responses. This irtdighat the
participants thought they did well using the rainbow colapmeven

725, p< 0:001), and that they were more con -

in which participants identi ed low ESS regions and statetsdrom
participants during the verbal feedback section. In cattridere is
no obvious strategy for “reading” across the 3D represemtatThe
3D visualization also requires one to rotate and interath tie im-
age, thus it takes longer for someone to view all the dataddlitian
to participants verbally complaining about the added axtgon, par-
ticipants had a dif cult time remembering where they hadvprasly
identi ed a region of low ESS in the 3D representation. Thu®i-
der to make the 3D visualization more effective, one woulddcht
develop a good “mark-up” strategy such that a person knovet vel
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Statement:

| found it easy to

identify low shear 6.30 5.35 * 16.33|6.27 5.48|5.20

stress regions.

| was able to

perform the task 6.27 5.30 * 16.21|6.33 5.55|5.03

efficiently.

I am confident |

found all the low *

shear stress 6.11 5.17 6.30|5.90 5.55|4.77

regions.

| am confident all

the places | marked

are really low shear 5.84 5.63 5.91|5.77 5.85|5.40

stress.

Fig. 11. Averages of subjective responses  broken down by 2D and
3D representation, and color. The four statements are rated on a 7-point
Likert scale (1 = strongly disagree, 7 = strongly agree), and the asterisks
indicate results of statistical signi cance. Participant s felt it was easier
and faster in 2D, and they felt more con dent in 2D.

gions they have already identi ed or arteries already icspe The
2D representation also makes it easier to identify regidievo ESS

by easily exposing complex 3D features, such as artery bamdi9i-

furcation, where low ESS regions are likely to occur. Indemd re-

sults demonstrated that as the complexity of the tasksase par-
ticipants were able to maintain their accuracy in the 2D @i but

not in the 3D condition.

Additionally, based on the results of this work, our medijeaitic-
ipants and collaborators are now convinced of the utilita @D data
representation and appropriate color map choice:

“Three-dimensional volume visualizations provide thdigbio vi-
sually follow the connections between different branchdemoVis
presents a surprisingly elegant solution to this probler@Drby sim-
ply and cleanly plotting individual 2D multi-spectral peggations of
all vessels concurrently, and simply superposing a grapwisly their
connectivity. In this manner | think the visualization isienple yet
elegant, and powerful solution for conveying a mix of inhat2D
(stenosis degree) and innately 3D (endothelium) inforomti

“We have struggled for many years to nd a way to display

anatomic (i.e., geometric) data and endothelial sheassttata in a
comprehensive and intuitive manner. | think HemoVis elélgaolves
this problem and should be useful to clinicians and reseaschlike.
HemoVis is especially helpful in highlighting critical @® of low en-
dothelial shear stress and assessing their relationsttiiie teurround-
ing anatomy.”

“It was surprising to nd that different color mapping tedhnes
can render the task of identifying low shear stress regiess ambiva-
lent. By enhancing the perception of identi able pattenmshis com-
plicated problem that spans multiple independent sciemntisciplines
and hence differently trained scientists, it becomes thatmeasier to
reach signi cant conclusions. One can only wonder in just/ meany
other instances we make our task more dif cult than it needbéd
simply by maintaining the status quo. | for one am now morendpe
consider visualization an integral aspect of researchjcpdarly be-
fore dismissing hypotheses that rely on identifying cocgied data
patterns.”

7 CONCLUSIONS & FUTURE WORK

Through our formative qualitative user study, we have dgwedl a
task taxonomy for blood ow visualization and we have deysd a
new 2D tree diagram representation of coronary artery tréhs re-
sults of our quantitative study demonstrate that the 2Desgrtation

is not sensitive to increased complexity in the task andsuses more
accurate and ef cient at identifying regions of interesti2D repre-
sentation than a 3D representation, and that the rainbaw o@p can
signi cantly reduce a person's accuracy and ef ciency.

We are continuing to develop HemoVis based on the principhes
results of this study. Also, even though the 2D represeias more
accurate and ef cient for our tasks, having a 3D represantas still
essential for surgical planning. We will investigate thesteffective
ways to connect these two representations through linkaglsvin fu-
ture work. We also plan to investigate other user interfaasghs and
interactions for HemoVis. For example, if a doctor were inliaic
cal setting that allowed for detailed study of the data ateraction,
could adding Iters to narrow the range of ESS focus or adjesit of
color scale parameters be useful.

The work presented in this paper is broadly applicable terdo-
main applications as well as visualization in general. Té 8D tree
diagram representation utilized in HemoVis is applicablthe visual-
ization of other branched anatomical structures (e.gelrat and ve-
nous arterial systems, pulmonary systems) and generatiyridmical
pipe structures (e.g., engineering). In terms of genemlalization,
this work serves as both an example and template of how tdaromv
users of good visualization practices. In this case, a sscs®ry of
changing users' opinions with particular regard to appaiprdimen-
sionality of data representation and color choice. Thiskwat only
shows a real world example demonstrating just how signit@amim-
pact rainbow color can have on a user's task, but also a wagtfar
researchers to counter this issue by demonstrating to ukeis how
color impacts their task performance.
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